Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 802: 149671, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454147

RESUMO

The usage of reclaimed wastewater (RWW) for irrigation of agricultural soils is increasingly being acknowledged for reducing water consumption by promoting reuse of treated wastewater, and for the delivery of extant nutrients in the soil. The downside is that RWW may be a vector for contamination of soils with contaminants of emerging concern (CECs), if left uncontrolled. Its usage is anticipated to alter the soil properties, consequently also the soil microbial community. In the present study, soil microcosms were set to monitor how short periods (up to fourteen days) of RWW irrigation influence the soil ecosystem, namely its physicochemical properties, functioning, and colonising microbiota (differentiating fungi from bacteria). Two scenarios were studied: clean soil and soil contaminated (spiked) with 9 CECs, at conditions that limit any abiotic decay processes, monitoring along time fluctuations in the taxonomic and functional microbiota diversity. As shortly as fourteen days, the irrigation of either soil with RWW did not significantly (p > 0.05) alter its physicochemical properties and scarcely impacted the bioremediation processes of the CECs that showed decay levels ranging from 24% to 100%. Bacillus spp. dominance was enhanced along time in all the soil microcosms (reaching over 70% of the total abundance on the 7th day) but the RWW help to preserve, to some extent, high bacterial diversity. Besides, irrigation with RWW acted as a buffer of the soil mycobiota, limiting alterations in its composition caused either along time (to a minor degree) or due to contamination with CECs (to a great degree). This includes limiting the rise of Rhizopus sp. relative abundance. Collectively, our data support the utility of short-term periods of RWW irrigation for preserving the soil microbial diversity and functioning, especially when fungi are considered.


Assuntos
Microbiota , Águas Residuárias , Irrigação Agrícola , Solo , Microbiologia do Solo , Águas Residuárias/análise
2.
J Hazard Mater ; 406: 124304, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33153782

RESUMO

This study analyses the electrokinetic (EK) contribution to the removal from a clay soil of a mixture of 10 different contaminants of emerging concern (CECs; 17ß-estradiol, E2; sulfamethoxazole, SMX; bisphenol A, BPA; ibuprofen, IBU; 17α-ethinylestradiol, EE2; oxybenzone, OXY; diclofenac, DCF; triclosan, TCS; caffeine, CAF; carbamazepine, CBZ). After 4 days, the CECs natural attenuation was between 0% (CBZ) and 90% (E2) yet increasing with the application of EK (20 mA, 12 h ON/OFF) to 14% (CBZ) and 100% (E2). When EK was applied, the CECs more recalcitrant to biodegradation (i.e. ≤ 13% biotic decay) mostly underwent electro-chemical induced degradation (OXY, DCF, TCS, CAF, CBZ). Daily irrigation enhanced the rates of the electro-oxidation -osmosis and -migration, increasing the CECs decay. After 8 days of EK treatment, the CECs decay increased, surpassing the decay lag phase of some compounds (OXY, TCS, and CBZ). Yet after 16 days, most CECs showed similar removals with and without EK, with EK only acting positively on SMX, OXY, TCS and CBZ (ca. +10%). Our results support that EK application can improve the removal of CECs from soil, however, under the conditions tested, 16-day treatment lead to pH alterations that decreased the bioremediation efficiency and inhibited electro-degradation near the cathode.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Triclosan , Biodegradação Ambiental , Solo , Poluentes do Solo/análise
3.
Sci Total Environ ; 743: 140544, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32652356

RESUMO

The effluent reuse for soil irrigation is foreseen as a possible strategy to mitigate the pressure on water resources. However, there is the risk of potential accumulation in soil of emerging organic contaminants (EOCs). In the present work the electrokinetic remediation (EKR) technology, use of direct current, was applied for the removal of EOCs from a soil irrigated with effluent. For this, a soil collected from a rice field (located in Portugal) was mixed with spiked effluent to simulate flood irrigation in one time-period. The experiments were carried out for 6 days applying a low current intensity of 2.5 mA. Different current strategies were tested: continuous mode, reversed electrode polarization (REP), On/Off time periods, and the combination of the last two. The target EOCs comprises a list of six pharmaceuticals and personal care products widely detected in treated wastewater. This study showed that once introduced in soil through effluent irrigation, 20-100% of the EOCs were still present in the soil after 6 days. EKR enhanced up to 20% of the EOCs removal when comparing with control (without current). The EOC removals showed to be related to the microcosm location (anode, central or cathode sections) and dependent of EOCs characteristics. Soil characteristics did not change when On/Off system was combined with REP as a current strategy, and a more homogenous removal of the studied EOCs was achieved in the tested conditions. EKR showed to be a promising technology to be applied in EOCs contaminated soils, not only for removal purposes, but also to avoid possible dispersion in the environment.

4.
Nanomaterials (Basel) ; 10(4)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235407

RESUMO

Triclosan (TCS) is a bacteriostatic used in household items that promotes antimicrobial resistance and endocrine disruption effects both to humans and biota, raising health concerns. In this sense, new devices for its continuous monitoring in complex matrices are needed. In this work, sensors, based on polyelectrolyte layer-by-layer (LbL) films prepared onto gold interdigitated electrodes (IDE), were studied. An electronic tongue array, composed of (polyethyleneimine (PEI)/polysodium 4-styrenesulfonate (PSS))5 and (poly(allylamine hydrochloride/graphene oxide)5 LbL films together with gold IDE without coating were used to detect TCS concentrations (10-15-10-5 M). Electrical impedance spectroscopy was used as means of transduction and the obtained data was analyzed by principal component analysis (PCA). The electronic tongue was tested in deionized water, mineral water and wastewater matrices showing its ability to (1) distinguish between TCS doped and non-doped solutions and (2) sort out the TCS range of concentrations. Regarding film stability, strong polyelectrolytes, as (PEI/PSS)n, presented more firmness and no significant desorption when immersed in wastewater. Finally, the PCA data of gold IDE and (PEI/PSS)5 sensors, for the mineral water and wastewater matrices, respectively, showed the ability to distinguish both matrices. A sensitivity value of 0.19 ± 0.02 per decade to TCS concentration and a resolution of 0.13 pM were found through the PCA second principal component.

5.
Chemosphere ; 247: 125758, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31931309

RESUMO

Degradation technologies applied to emerging organic contaminants from human activities are one of the major water challenges in the contamination legacy. Triclosan is an emerging contaminant, commonly used as antibacterial agent in personal care products. Triclosan is stable, lipophilic and it is proved to have ecotoxicologic effects in organics. This induces great concern since its elimination in wastewater treatment plants is not efficient and its by-products (e.g. methyl-triclosan, 2,4-dichlorophenol or 2,4,6-trichlorophenol) are even more hazardous to several environmental compartments. This work provides understanding of two different electrochemical reactors for the degradation of triclosan and its derivative by-products in effluent. A batch reactor and a flow reactor (mimicking a secondary settling tank in a wastewater treatment plant) were tested with two different working anodes: Ti/MMO and Nb/BDD. The degradation efficiency and kinetics were evaluated to find the best combination of current density, electrodes and set-up design. For both reactors the best electrode combination was achieved with Ti/MMO as anode. The batch reactor at 7 mA/cm2 during 4 h attained degradation rates below the detection limit for triclosan and 2,4,6-trichlorophenol and, 94% and 43% for 2,4-dichlorophenol and methyl triclosan, respectively. The flow reactor obtained, in approximately 1 h, degradation efficiencies between 41% and 87% for the four contaminants. This study suggests an alternative technology for emerging organic contaminants degradation, since the combination of a low current density with the flow and matrix induced disturbance increases and speeds up the compounds' elimination in a real environmental matrix.


Assuntos
Técnicas Eletroquímicas/instrumentação , Compostos Orgânicos/química , Triclosan/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Eletrodos , Humanos , Cinética , Fenóis/química , Triclosan/análogos & derivados
6.
Sensors (Basel) ; 19(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817207

RESUMO

Triclosan, which is a bacteriostatic used in household items, has raised health concerns, because it might lead to antimicrobial resistance and endocrine disorders in organisms. The detection, identification, and monitoring of triclosan and its by-products (methyl triclosan, 2,4-Dichlorophenol and 2,4,6-Trichlorophenol) are a growing need in order to update current water treatments and enable the continuous supervision of the contamination plume. This work presents a customized electronic tongue prototype coupled to an electrochemical flow reactor, which aims to access the monitoring of triclosan and its derivative by-products in a real secondary effluent. An electronic tongue device, based on impedance measurements and polyethylenimine/poly(sodium 4-styrenesulfonate) layer-by-layer and TiO2, ZnO and TiO2/ZnO sputtering thin films, was developed and tested to track analyte degradation and allow for analyte detection and semi-quantification. A degradation pathway trend was observable by means of principal component analysis, being the sample separation, according to sampling time, explained by 77% the total variance in the first two components. A semi-quantitative electronic tongue was attained for triclosan and methyl-triclosan. For 2,4-Dichlorophenol and 2,4,6-Trichlorophenol, the best results were achieved with only a single sensor. Finally, working as multi-analyte quantification devices, the electronic tongues could provide information regarding the degradation kinetic and concentrations ranges in a dynamic removal treatment.


Assuntos
Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Clorofenóis/análise , Clorofenóis/isolamento & purificação , Técnicas Eletroquímicas/instrumentação , Nariz Eletrônico , Polietilenoimina/química , Polímeros/química , Análise de Componente Principal , Extração em Fase Sólida , Ácidos Sulfônicos/química , Titânio/química , Triclosan/análise , Triclosan/isolamento & purificação , Óxido de Zinco/química
7.
Environ Pollut ; 253: 625-635, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31330354

RESUMO

The potential of electrokinetic (EK) remediation to remove from soils one particular group of contaminants - contaminants of emergent concern (CECs), remains largely overlooked. The present study aimed to evaluate the efficiency of the EK process for the remediation of an agricultural clay soil containing CECs. The soil was spiked with four CECs - sulfamethoxazole, ibuprofen, triclosan and caffeine - and their status (i.e. residual amounts and spatial distribution) evaluated at the seventh day of EK treatment at a defined current intensity, directionality and duration of void period. The characterization of the soil physicochemical properties was also undertaken. The results showed similar degradation trends in all applied EK strategies, which were suchlike to that of the natural attenuation (biotic control): sulfamethoxazole > ibuprofen ≥ triclosan ≥ caffeine. The removal of the CECs was higher under a 10 mA constant current application than in the natural attenuation (up to 2.8 times higher; from 13 to 85%). Caffeine was the exception with its best removal efficiency being achieved when the ON/OFF switch mode with a void period duration of 12 h was used (36%). The use of electro-polarization reversal mode did not favour the remediation. The soil pH variations resulting from EK application were determinant for triclosan remediation, which increased with soil pH increase. The only EK condition that promoted the removal of all CECs was the ON/OFF switch mode of 12 h (removals between 36 and 72%), in which only minor physicochemical disturbances of the soil were observed. This is in accordance with a potential application of EK in-situ. The last is reinforced by the low estimated electrical cost of the best EK technology - 2.33 €/m3 for the 7 days. Overall the EK remediation processes are a promising technology to stimulate in situ the removal of CECs from agricultural soils.


Assuntos
Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Solo/química , Argila , Eletricidade , Técnicas Eletroquímicas , Poluentes do Solo/análise
8.
Environ Sci Pollut Res Int ; 25(36): 35928-35935, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30191527

RESUMO

Pharmaceuticals and personal care products (PPCPs) have attracted increasing concern during the last decade because of their widespread uses and continuous release to the aquatic environment. This work aimed to study the distribution of caffeine (CAF), oxybenzone (MBPh), and triclosan (TCS) when they arrive in salt marsh areas and to assess their remediation potential by two different species of salt marsh plants: Spartina maritima and Halimione portulacoides. Experiments were carried out in the laboratory either in hydroponics (sediment elutriate) or in sediment soaked in elutriate, for 10 days. Controls without plants were also carried out. CAF, MBPh, and TCS were added to the media. In unvegetated sediment soaked in elutriate, CAF was mainly in the liquid phase (83%), whereas MBPh and TCS were in the solid phase (90% and 56%, respectively); the highest remediation was achieved for TCS (40%) and mainly attributed to bioremediation. The presence of plants in sediment soaked in elutriate-enhanced PPCPs remediation, decreasing CAF and TCS levels between approximately 20-30% and MBPh by 40%.. Plant uptake, adsorption to plant roots/sediments, and bio/rhizoremediation are strong hypothesis to explain the decrease of contaminants either in water or sediment fractions, according to PPCPs characteristics.


Assuntos
Benzofenonas/análise , Cafeína/análise , Chenopodiaceae/fisiologia , Poaceae/fisiologia , Triclosan/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Adsorção , Biodegradação Ambiental , Sedimentos Geológicos/química , Hidroponia , Raízes de Plantas/química , Água do Mar , Água/química
9.
J Hazard Mater ; 358: 467-474, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29759593

RESUMO

The present work discusses the efficiency of the electrodialytic (ED) process to remove emerging organic contaminants (EOCs) from effluent. The ED process was carried out in a cell of two-compartments (2 C-cell) with effluent in either the anode or cathode compartment, separated from the electrolyte compartment through an anion or a cation exchange membrane (AEM and CEM, respectively). As effluent destination might be soil irrigation, and having in mind the nutrient recycling, phosphorus was also monitored in the process. The ED removals showed to be dependent of EOCs characteristics and cell design. Removals were higher when using an AEM (60-72%) than a CEM (8-63%), except for caffeine when the effluent was placed in the cathode, that did not show any removal. When using an AEM with the effluent placed in the anode compartment, all the EOCs (including caffeine) were removed between 57-72%, mainly through electrodegradation phenomena. Regarding phosphorus, a polarity switch may be done to a 2 C-cell with a AEM, depending on the effluent final use. This technology is still in its first steps and, in both cases, further optimization of ED parameters is needed. Still, this technological innovation and cross-cutting research envisages the promotion of economic, social and environmental benefits.

10.
Environ Sci Pollut Res Int ; 24(8): 7208-7215, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28101706

RESUMO

The present work aimed to evaluate the capacity of constructed wetlands (CWs) to remove three emerging organic contaminants with different physicochemical properties: caffeine (CAF), oxybenzone (MBPh), and triclosan (TCS). The simulated CWs were set up with a matrix of light expanded clay aggregates (LECA) and planted with Spartina maritima, a salt marsh plant. Controlled experiments were carried out in microcosms using deionized water and wastewater collected at a wastewater treatment plant (WWTP), with different contaminant mass ranges, for 3, 7, and 14 days. The effects of variables were tested isolatedly and together (LECA and/or S. maritima). The presence of LECA and/or S. maritima has shown higher removal (around 61-97%) of lipophilic compounds (MBPh and TCS) than the hydrophilic compound (CAF; around 19-85%). This was attributed to the fact that hydrophilic compounds are dissolved in the water column, whereas the lipophilic ones suffer sorption processes promoting their removal by plant roots and/or LECA. In the control (only wastewater), a decrease in the three contaminant levels was observed. Adsorption and bio/rhizoremediation are the strongest hypothesis to explain the decrease in contaminants in the tested conditions.


Assuntos
Silicatos de Alumínio/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água , Adsorção , Argila , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
11.
J Hazard Mater ; 313: 185-92, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27064863

RESUMO

Electrically assisted mitigation of coastal sediment oil pollution was simulated in floor-scale laboratory experiments using light crude oil and saline water at approximately 1/10 oil/water (O/W) mass ratio in pore fluid. The mass transport of the immiscible liquid phases was induced under constant direct current density of 2A/m(2), without water flooding. The transient pore water pressures (PWP) and the voltage differences (V) at and in between consecutive ports lined along the test specimen cell were measured over 90days. The oil phase transport occurred towards the anode half of the test specimen where the O/W volume ratio increased by 50% over its initial value within that half-length of the specimen. In contrast, the O/W ratio decreased within the cathode side half of the specimen. During this time, the PWP decreased systematically at the anode side with oil bank accumulation. PWP increased at the cathode side of the specimen, signaling increased concentration of water there as it replaced oil in the pore space. Electrically induced transport of the non-polar, non-conductive oil was accomplished in the opposing direction of flow by displacement in absence of viscous coupling of oil-water phases.

12.
Waste Manag ; 52: 193-201, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27033993

RESUMO

Sewage sludge ashes (SSA), although a waste, contain elements with socio-economic and environmental potential that can be recovered. This is the case of phosphorus (P). SSA from two Danish incinerators were collected during two years and characterized. The sampling was done immediately after incineration (fresh SSA) or from an outdoor deposit (deposited SSA). Although morphology and mineral composition were similar, physico-chemical and metal concentration differences were found between incinerator plants and sampling periods. No differences were observed between deposited and fresh SSA, except for the parameters directly influenced by disposal conditions (e.g. moisture content). All the SSAs had high concentrations of P (up to 16wt%), but they all exceeded Danish EPA Cd and Ni thresholds for direct application at agricultural soil. Fresh and deposited SSA were acid washed aiming P extraction, achieving 50gP/kg (approx. 37% of total P), but metals were also co-extracted to the liquid phase. To avoid and/or minimize the metals pollution of the extracted P, selective P recovery from the SSA was tested, using the electrodialytic (ED) process. ED laboratory cells, with 3 compartments (3c) and 2 compartments (2c), and two acid concentrations (H2SO4, 0.08M and 0.19M) were used for 7days. The most concentrated acid solution increased P solubilization. The 2c-cell combined with the higher acid concentration resulted in higher P recoveries, 125g of P/kg of SSA in the anolyte. The obtained results showed that the ED process is a valuable tool for the SSA valorisation as it promotes simultaneous P recovery and metals extraction from the SSA.


Assuntos
Conservação dos Recursos Naturais/métodos , Compostos de Ferro , Fósforo/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Dinamarca , Incineração , Fósforo/análise
13.
Chemosphere ; 131: 157-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25841071

RESUMO

Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell.


Assuntos
Técnicas Eletroquímicas , Recuperação e Remediação Ambiental/métodos , Nanopartículas Metálicas/química , Bifenilos Policlorados/química , Poluentes do Solo/química , Ferro/química , Solo/química
14.
J Environ Manage ; 151: 550-5, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25601386

RESUMO

Contaminated soils and sediments with polychlorinated biphenyls (PCB) are an important environmental problem due to the persistence of these synthetic aromatic compounds and to the lack of a cost-effective and sustainable remediation technology. Recently, a new experimental setup has been proposed using electrodialytic remediation and iron nanoparticles. The current work compares the performance of this new setup (A) with conventional electrokinetics (setup B). An historically contaminated soil with an initial PCB concentration of 258 µg kg(-1) was treated during 5, 10, 20 and 45 d using different amounts of iron nanoparticles in both setups A and B. A PCB removal of 83% was obtained in setup A compared with 58% of setup B. Setup A also showed additional advantages, such as a higher PCB dechlorination, in a shorter time, with lower nZVI consumption, and with the use of half of the voltage gradient when compared with the traditional setup (B). Energy and nZVI costs for a full-scale reactor are estimated at 72 € for each cubic meter of PCB contaminated soil treated on-site, making this technology competitive when compared with average off-site incineration (885 € m(-3)) or landfilling (231 € m(-3)) cost in Europe and in the USA (327 USD m(-3)).


Assuntos
Técnicas Eletroquímicas/métodos , Ferro , Nanopartículas Metálicas/química , Bifenilos Policlorados/química , Poluentes do Solo/química , Técnicas Eletroquímicas/instrumentação , Poluição Ambiental/análise , Solo/química
15.
Appl Microbiol Biotechnol ; 99(10): 4471-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25575888

RESUMO

Historically used in textile and paper industry, hemp fibres have started to find new applications in composite materials with important economic and ecological advantages. However, their applications are limited since manufacturers have some difficulties to standardise fabrication processes. This study is a first step before selection and isolation of strains that could later be used to optimise microbial retting efficiency and hence fibre quality. We studied six samples harvested on different ground types, at different dates and with different retting durations on field to obtain an exhaustive representation of the process. After DNA extraction, total bacteria and fungi associated with stems during retting were specifically quantified using real-time PCR. Then, using sequence analysis of randomly cloned 16S and 18S ribosomal RNA (rRNA) genes, a phylogenetic characterisation of the dominant microorganisms was carried out. Quantitatively, we showed that there were 8.1-9.5 log10 16S rRNA gene copies per gram of hemp straw for bacteria and 8.6-9.6 log10 18S rRNA gene copies per gram for fungi. Qualitatively, we noticed a higher bacterial diversity in comparison to fungi. This work showed that in the different samples, the same species were present but in significantly different proportions according to ground type, harvest dates and retting durations on field. The most frequent bacterial sequences were affiliated to species Escherichia coli, Pantoea agglomerans, Pseudomonas rhizosphaerae, Rhodobacter sp., Pseudomonas fulva, Rhizobium huautlense and Massilia timonae, whereas fungal sequences were principally related to the genera Cladosporium and Cryptococcus.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Cannabis/microbiologia , Fungos/isolamento & purificação , Fungos/metabolismo , Bactérias/classificação , Bactérias/genética , Cannabis/metabolismo , Fungos/classificação , Fungos/genética , Dados de Sequência Molecular , Filogenia , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
16.
J Colloid Interface Sci ; 433: 189-195, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25129337

RESUMO

Polychlorinated biphenyls (PCB) are persistent organic pollutants (POP) that strongly adsorb in soils and sediments. There is a need to develop new and cost-effective solutions for the remediation of PCB contaminated soils. The suspended electrodialytic remediation combined with zero valent iron nanoparticles (nZVI) could be a competitive alternative to the commonly adapted solutions of incineration or landfilling. Surfactants can enhance the PCB desorption, dechlorination, and the contaminated soil cleanup. In this work, two different surfactants (saponin and Tween 80) were tested to enhance PCB desorption and removal from a soil sampled at a polluted site, in a two-compartment cell where the soil was stirred in a slurry with 1% surfactant, 10mL of nZVI commercial suspension, and a voltage gradient of 1Vcm(-1). The highest PCB removal was obtained with saponin. Higher chlorinated PCB congeners (penta, hexa, hepta and octachlorobiphenyl) showed removal percentages between 9% and 96%, and the congeners with highest removal were PCB138, PCB153 and PCB180. The use of low level direct current enhanced PCB removal, especially with saponin. Electrodechlorination of PCB with surfactants and nZVI showed encouraging tendencies and a base is thus formed for further optimization towards a new method for remediation of PCB polluted soils.

17.
Chemosphere ; 117: 124-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24997283

RESUMO

Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17ß-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 µg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation.


Assuntos
Disruptores Endócrinos/química , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Eletrodos , Cinética
18.
Sci Total Environ ; 493: 178-84, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24946031

RESUMO

Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte.


Assuntos
Azepinas/química , Recuperação e Remediação Ambiental/métodos , Praguicidas/química , Poluentes do Solo/química , Tiocarbamatos/química , Azepinas/análise , Ferro/química , Nanopartículas Metálicas/química , Praguicidas/análise , Solo/química , Poluentes do Solo/análise , Tiocarbamatos/análise
19.
Waste Manag ; 34(5): 886-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24656469

RESUMO

The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB). Both samples were ED treated as stirred suspensions in sulphuric acid for 3, 7 and 14 days. After 14 days, phosphorus was mainly mobilized towards the anode end (approx. 60% in the SA and 70% in the SB), whereas heavy metals mainly electromigrated towards the cathode end. The anolyte presented a composition of 98% of P, mainly as orthophosphate, and 2% of heavy metals. The highest heavy metal removal was achieved for Cu (ca. 80%) and the lowest for Pb and Fe (between 4% and 6%). The ED showed to be a viable method for phosphorus recovery from SSA, as it promotes the separation of P from the heavy metals.


Assuntos
Técnicas Eletroquímicas , Fósforo/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluição Química da Água/prevenção & controle , Diálise
20.
Environ Sci Pollut Res Int ; 21(9): 6221-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24488519

RESUMO

A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Individual and synergistic effects of biostimulation were also tested, in parallel. An interim evaluation at the end of the first 42 days showed that biostimulation and active heating, as separate treatments, enhanced petroleum hydrocarbon (PHC) removal compared to natural attenuation. The coupling of both technologies was even more effective, corroborating the benefits of both techniques in a remediation strategy. However, between day 42 and day 168, there was an opposite remediation trend with all treatments suggesting a stabilization except for natural attenuation, where PHC values continued to decrease. This enforces the "self-purification" capacity of the system, even at low temperatures. Coupling biostimulation with active heating was the best approach for PHC removal, namely for a short period of time (42 days). The proposed remediation scheme can be considered a reliable option for faster PHC removal with low maintenance and using "waste heating" from an incineration facility.


Assuntos
Incineração , Poluição por Petróleo/análise , Petróleo/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Regiões Árticas , Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Groenlândia , Calefação , Petróleo/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...